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ABSTRACT

Church forests collectively represent the only surviving remnants of the original montane forest, serving as critical sanctuaries for many of
Ethiopia’s endangered and endemic plant and invertebrate taxa. Modern inventories of church forests suggest that they are vulnerable to deg-
radation because of their small size and isolation. The aim of this study is to use historical air photos from the period of the Italian occupation
of Ethiopia (1935–1941) to measure changes to church forests over a ~80-year time span. We find little evidence that church forests in the
study region around Debra Tabor in the northern Ethiopia highlands are declining in size. Rather, church forests have proven to be remark-
ably resilient on the landscape despite decades of dramatic change to the world around them. Our findings, therefore, highlight the effective-
ness of religion-based forest stewardship. Results also indicate, however, that while many church forests used to be buffered from intensive
agricultural activity (e.g., cultivation and pasture) today, they find themselves significantly more isolated and vulnerable to edge effects as a
result of a general decrease of trees and bushlands surrounding the forests. Copyright © 2016 John Wiley & Sons, Ltd.
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INTRODUCTION/BACKGROUND

Land use and cover (LUC) analysis is well established as a
critical means to explicitly measure the dynamics of ecosys-
tem change in the tropics (Lambin et al., 2003). It is clear
that anthropogenically driven land cover change poses a sig-
nificant threat to ecosystem functioning worldwide
(Bradshaw et al., 2008) and is a major contributor to biodi-
versity decline and global climate change (Foley et al.,
2005). Laurance & Wright (2009) report that land use
change has reduced the extent of tropical forests by 50%
over the past century. Further, conservation areas, national
parks, and reserves are threatened because LUC changes im-
mediately outside their boundaries can indirectly degrade
the integrity of core interior areas via edge effects (Laurance
et al., 2012).
Land use and cover change in East Africa reflects dynam-

ics in the tropics at large. For example, the FAO (2010) es-
timates that deforestation occurred at a rate of approximately
1% per year between 1990 and 2010 in East Africa. The
general consensus is that large-scale forest loss occurred be-
cause of the regions long settlement and agricultural history
– what amounts to a neoMalthusian narrative of degradation.
Within Ethiopia, however, the history of deforestation and
vegetation cover change is more opaque. Some researchers
suggest that 40% of Ethiopia was forested as recently as

the turn of the 20th century (Pohjonen & Pukkala, 1990),
while others argue that there is little evidence of vast for-
ested areas in the recent past (McCann, 1997). Such debates
extend to the country’s northern highlands as well, where
the common perception is that, several generations ago,
forest cover was more substantial than today (e.g., Allen-
Rowlandson, 1989; Rodgers, 1992). What is known is that
LUC change in the northern highlands is nonlinear and
geographically heterogeneous (Lanckriet et al., 2015; Jacob
et al., 2016). For instance, Darbyshire et al. (2003) used
pollen analysis to describe a complex story of human
disturbance to the natural vegetation of the highlands (a
Podocarupus-Juniperus forest), including periods of both
vegetation clearance and regrowth over the past 3,000 years.
Many relatively recent LUC changes have been docu-

mented in the northern highlands using remote sensing and
other geographic information system (GIS) methods. Collec-
tively, however, these studies are difficult to integrate within
narratives of deforestation because they are not exclusively
focused on forests. Rather, they document changes in vegeta-
tion cover more broadly. For example, Yeshaneh et al.
(2013) report that “woody vegetation” decreased 46% be-
tween the 1950s and 2010 in the Koga Catchment in north-
western Ethiopia. In a similar vein, the Blue Nile basin to
the south of Lake Tana appears to have experienced a decline
in “natural forest cover” during the same time period, as well
as a 50% decline in “dry/moist mixed forests” (Gebrehiwot
et al., 2014). Elsewhere, Zeleke & Hurni (2001) found that
“natural forest cover” in the Dembecha area (Gojam)
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declined from 27% in the 1950s to less than 1% in 1995, a de-
cline of over 99% of the “forest” that existed in 1957. Further
to the northeast within the Northern Highlands, Tegene
(2002) reported dramatic decline in “shrubland” in the
Derekolli Catchment, South Welo, from 16% in 1957 to
2.5% in 1986. Jacob et al. (2015) divided the landscape into
binary “forest/nonforest” classes and reported two periods of
deforestation (1917–1965 and 1982–2013) using historical
air photos, repeat terrestrial photos, and satellite imagery
for a study site located in the Abune Yosef Mountains – “for-
est” decline during the later period exceeded 50%. Collec-
tively, these studies seem to confirm the general consensus
that large-scale vegetation decline took place during the
20th century as populations rose and increasingly more land
was brought into agricultural production (Woien, 1995).
Recently a more nuanced, and possibly contradictory, pic-

ture is starting to emerge from a collection of studies con-
ducted in the general vicinity of the northern Tigray region
of Ethiopia; again, depending on how explicitly natural veg-
etation is classified or defined. For example, Belay et al.
(2015) reported results that were partly in line with the re-
search reviewed previously – a significant conversion of
“forest and bushland” to arable land and rangeland between
1965 and 1994 – but also described a more recent “green-
ing” phase whereby marginal land was abandoned and re-
placed with “shrubs and bushes”. The expansion of shrubs
and bushes is an interesting development because it suggests
a possible decrease in grazing and fuel wood pressure on the
landscape. Critical to the story and concurrent with the same
period, Eucalyptus sp. were expanding across the landscape,
adding additional greenness and possibly decreasing fuel
wood pressure (Nyssen et al., 2009). Using the oldest land-
scape photographs from northern Ethiopia (1868) and repeat
photography methods, Nyssen et al. (2014) describe in de-
tail a “greening” phase associated with Eucalyptus sp., con-
cluding that the northern Ethiopian highlands are greener
today than a century and a half ago. They also document a
recent increase in the cover of “indigenous trees” – again,
new developments that contradict the degradation narrative
of forest change in the northern highlands. It is worth noting,
however, that their results still show a slight decline in
“woody vegetation” between the 1930’s and the present
when excluding Eucalyptus sp.
The findings of Nyssen, Haile, Naudts, Munro, Poesen,

Moeyersons, Frankl, Deckers, and Pankhurst (2009, 2014)
have been supported by additional research conducted using
a variety of data and mixed LUC methods (Meire et al.,
2013; de Mûelenaere et al., 2014). For example, Meire
et al. (2013) developed a methodology to quantitatively an-
alyze warped terrestrial photographs. Their repeat photogra-
phy research in Tigray documented a significant increase in
“woody vegetation” between 1868 and 2008, a change that
principally resulted from the conversion of “bushland” to
planted Eucalyptus sp. De Mûelenaere et al. (2014) used sat-
ellite imagery and historical photographs to document the
conversion of “bare ground” to “bushland”, the possible be-
ginning of a return to a more natural state, and the growth of

Eucalyptus sp. plantations, which more than doubled in
Tigray since the early 1970s.
One element understudied in the broader debate about

LUC changes to vegetation in the northern highlands of
Ethiopia is how the integrity of church forests fared during
the 20th century. And yet church forests collectively repre-
sent the only surviving remnants of the original afro-
montane forest (Aerts et al., 2006; 2016), serving as critical
sanctuaries for many of Ethiopia’s endangered and endemic
plant and invertebrate taxa (Bongers et al., 2006; Aerts
et al., 2006; Cardelús et al., in revision). The conservation
value of church forests cannot be overstated. For example,
Wassie et al. (2010) documented 160 different species of in-
digenous trees in a survey of only 28 church forests, the
highest tree species richness in the region. Church forests
also represent important cultural heritage sites, as an integral
part of the Ethiopian Orthodox Tewahido Church, dating to
the fourth century AD (Wassie 2002; Klepeis, Orlowska,
Kent, Cardelús, Scull, Wassie and Woods, in press). Thus,
church forests provide many social benefits to the communi-
ties that surround them (Berhane-Selassie, 2008).
Inventories of church forests at the landscape scale

(Cardelús et al., 2013; Reynolds et al., 2015; Aerts et al.,
2016) indirectly suggest that forests are vulnerable to degra-
dation. For example, estimates of church forest size vary
from 2 (Aerts et al., 2016) to 5 ha (Cardelús et al., 2013).
Given that “edge effects” (e.g., greater light intensity, lower
soil moisture, and increased wind) can degrade forests up to
300m into their interiors (Laurance et al., 2011), the average
size of church forests is problematic. Further, Aerts et al.
(2016) found that only 38% of church forests inventoried
(n=402) have a core interior. In a similar vein, both
Cardelús et al. (2013) and Aerts et al. (2016) report that
church forests are, on average, ~2 km from the nearest
neighboring forest, a distance that limits successful dis-
persal, threatens regeneration, and degrades the ecological
value of the habitat the forests provide. Direct impacts to
church forests have been investigated on the ground, and
there are signs of forest degradation and biodiversity decline
(Bongers et al., 2006; Wassie et al., 2010), as well as re-
duced regeneration potential as a result of grazing pressure
and other LUC effects on soil properties (Aerts et al.,
2006; Wassie et al., 2009; Adugna and Abegaz, 2016). Sim-
ilar to the deforestation narrative described previously, there
also seems to be a general consensus that church forests are
declining in number and size (e.g., Lowman, 2011, Cardelús
et al., 2012; Reynolds et al., 2015).
Few studies exist, however, documenting LUC changes

over time to the church forest mosaic. In a repeat photogra-
phy study focused on LUC changes in Tigray, Meire,
Frankl, De Wulf, Haile, Deckers and Nyssen (2013) re-
ported that a single church forest visible in a 1868 terrestrial
photograph actually expanded in size following 140 years –
growth that was attributed to the planting of Eucalyptus sp.
on the edge of the forest. In an example from the Gamo
Highlands, Daye and Healey (2015) found that six church
forest patches were less vulnerable to change than otherwise

2 P. SCULL ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. LAND DEGRADATION & DEVELOPMENT, (2016)



similar nonsacred forest patches over a 15-year period
(1995–2010). Beyond these two studies, little is known
about whether church forests have decreased in overall size
in the last century. Daye and Healey (2015) also found that
church forests became more vulnerable as a result of increas-
ing fragmentation. Agricultural and settlement expansion in
the area immediately surrounding the forests led to a decline
in a natural buffer, which leaves forests more vulnerable to
edge effects, potentially increasing their isolation from other
forests. Scattered trees and natural nonforest vegetation of-
ten represent an underappreciated element of fragmented
forest landscapes but can play ecologically critical roles at
both the local and regional scale. For example, Manning
et al. (2006) suggest that scattered trees should be con-
sidered “keystone structures,” especially within highly
modified landscapes (Manning et al., 2006). Given the
importance of the area outside the church forests to their
conservation value or integrity as remnant patches, it is un-
clear how the vast LUC changes described previously have
impacted the overall church forest mosaic. For example,
how has LUC surrounding church forests changed during
the last century?
This study uses historical air photos from the period of the

Italian occupation of Ethiopia (1935–1941) to measure
changes to church forests over the past 80 years. We are
not aware of any other church forest studies using Italian oc-
cupation era photography or any other means to determine
historic forest extent during that time; hence, this study con-
tributes to the larger discussion of forest change in the north-
ern highlands by assessing the resilience of church forests on
the landscape. We use the term resilience to recognize that

some forests have shown a remarkable ability to persevere
despite significant land use pressure throughout the 20th
century that might otherwise have caused decline or degra-
dation. Measuring and understanding LUC change is critical
information for conservation efforts generally given the eco-
logical importance of church forests as refuge sites for the
original Afromontane highland forests and as biodiversity
hotspots of today.

Research Questions

(1) How resilient are Ethiopian church forests over an
approximately 80-year time span?

(2) How has the area outside church forests changed
during the past 80 years?

(3) What controls variation in resiliency and local LUC
changes from one forest to another?

MATERIAL AND METHODS

Study Area

We studied 37 church forests located in the northern
Ethiopian Highlands (South Gondar State) to the east and
upslope from Lake Tana (between 11°45′–12°16′ and 37°
49′–38°27′, Figure 1). Nyssen et al. (2014) provide a rich
description of the physical geography of the northern High-
lands. The forests themselves are located within 50 km of the
regional town of Debre Tabor and range in elevation from
1,750 to 3,150m; 27 of the forests, however, lie between
1,800 and 2,200m. Annual precipitation ranges between
1,000 and 1,200mmy�1, most of which fall during the
summer rainy season. The Central Statistical Agency listed

Figure 1. Study Area. This figure is available in colour online at wileyonlinelibrary.com/journal/ldr.
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Debra Tabor’s population as approximately 55,000 during
the 2007 census (CSA, 2007), but the region more generally
is rural with population densities around 200 people per
square kilometer. Land use throughout the study site is
dominated by small-scale agriculture, including both areas
devoted to crops, as well as open land used for livestock
grazing. Small woodlots and some larger plantations (typi-
cally Eucalyptus sp. and Cupressus) are included within
the overall matrix. The potential natural vegetation of the re-
gion is “dry evergreen afromontane forest and grassland
complex” (Friis et al., 2010). The church forests of the study
site are typically dominated by Juniperus procera
(Cupressaceae) and Olea europaea (Oleaceae).

Data

The aerial photographs were originally acquired by the
Istituto Geografico Militare during the period of Italian oc-
cupation of Ethiopia (1935–1941) and are presumed to be
the oldest air photos of East Africa. Nyssen et al. (2016) pro-
vide a full description of the recovery and digitization of the
archive. In short, a camera with a focal length of 178mm
was used with a target flying height of between 4,000 and
4,500ma.s.l., yielding an approximate scale of 1:11,500.
Four simultaneous images were acquired perpendicular to
the flight line: one vertical photo, two low-oblique images
to either side, and one alternating high oblique image. Each
hard copy panel of four photos was mounted on hardboard
tile and scanned at 600 dpi. For the purposes of this study,
only the vertical and low-oblique photographs were used;
the high oblique images were determined to be too distorted
to be effectively utilized.
A total of 37 forests were included in the archive for

South Gondar, along three distinct flight lines. Twenty-one
were included on a NW–SE trending flight line that was
acquired on 14 October 1938 and 20 were captured on two
E–W flight lines on 21 January 1940. Four forests were im-
aged on both days.
The scanned image panels (all four photographs) were

divided into individual exposures (vertical or low oblique)
and preprocessed in Adobe Acrobat to optimize contrast
and brightness. Co-registration, or image-to-image registra-
tion, was used to georeferenced the images, using control
points (CPs) acquired from Google Earth images (2006
Digital Globe, spatial resolution of ca. 0.5m). Between 9
and 26 CPs were used for each individual image, and an
effort was made to localize the points in the vicinity of
each church forest. This procedure affords the advantage
of including a large number of CPs and has been shown
to be effective by Hughes et al. (2006), James et al.
(2012), and Frankl et al. (2013). Transformation was ulti-
mately performed in ArcMap 10.2 using third-order
polynomials.

Land Use and Cover Analysis

The historical extent of church forests was then digitized
visually on-screen using standard procedures (Avery &
Berlin, 1992), following a routine similar to Aerts et al.

(2016). We also digitized the extent of all woody vegeta-
tion (e.g., typically shrubland) that was contiguous with
each forest. We restricted our classification to those areas
that were contiguous with the forest because we were inter-
ested in measuring how the area around the forests might
have changed over the years, recognizing the importance
of transitional zones between forest remnants and intensely
utilized areas (e.g., cultivated sites). For example, contigu-
ous woody vegetation helps buffer edge effects (e.g., mi-
croclimate) in fragmented forest landscapes. In those
instances where surrounding woody vegetation extended
indefinitely (i.e., off photo), they were clipped to the area
within 500m of the forest boundary. The modern extent
of the forest as well as surrounding buffer was also digi-
tized using Google’s image repository, following similar
procedures.

Spatial Analysis

We then used ArcMap to measure the area and perimeter of
all forests, as well as two variables designed to serve as
proxies for edge effects. First, the proportion of the forest
boundary that was not buffered by natural vegetation and
is considered a hard boundary (Hard) was determined by di-
viding the length of the perimeter that did not included nat-
ural vegetation immediately adjacent to the forest by total
perimeter length. Second, we calculated the percentage of
the 500-m buffer area that was classified as natural vegeta-
tion and considered a buffered edge (Buffer). Collectively,
both variables help characterize the sharpness of the bound-
ary between the forests and the surrounding agricultural
landscape.
Additional spatial analysis in ArcMap characterized the

geography of each individual site. To characterize
topography surrounding the forests, the mean and standard
deviation of elevation and slope were calculated within
the 500-m buffer using a digital elevation model with a
resolution of 30m (Land Processes Distributed Active
Archive Center, 2016). Mean annual precipitation for each
forest polygon was calculated using the WorldClim data-
base, which has a resolution of 1 km2 (Hijmans et al.,
2005). Following Nyssen et al. (2014), the seasonality of
precipitation (Cf) was calculated using Fournier’s (1962)
degradation coefficient for each individual site according
the equation: Cf= p

2/Py, where p equals the mean monthly
precipitation (mm) during the wettest month and py equals
the mean annual precipitation (mm). We also used
ArcMap to calculate the distance from the center of each
forest to the nearest road and the nearest major town, as
well as the mean population density for the buffer area,
which was calculated using a gridded world population
dataset (Center for International Earth Science Information
Network - Columbia University and Centro Internacional
de Agricultura Tropical, 2005).

Statistical Methods

A paired student’s t-test was used to determine if mean for-
est variables (area, perimeter, Hard, Buffer) differed
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between time periods. We then performed a backwards elim-
ination, ordinary least squares regression analysis (criterion:
probability of F-to-remove ≥0.100) to explore relationships
between indicators of forest change (those forest variables
that significantly changed between time periods, the depen-
dent variables) and the spatial analysis variables computed
to characterize variability between sites (the explanatory
variables).

RESULTS

Church forests did not decrease in size between the era of
Italian occupation and the present (Figure 2). Twelve of 37
forests stayed the same size, 15 grew and 10 shrunk. There
was no significant difference in the mean area or perimeter
length between the two time periods (Table I; Figure 2). Vi-
sually, we observed very few changes to the extent of the
forests during the 80-year interval (Figures 3–5). The persis-
tence of the core forest area, surrounding the circular church
towards the middle of the forest, can be readily observed
(Figures 3 and 4). However, declining woody biomass in
the area outside of the forests is noteworthy. Forests are
almost completely isolated on the landscape as a result of
declining bushlands (Figures 3 and 4). In other instances,
diffuse forest boundaries have become more abrupt, as illus-
trated by the northwestern boundary of the forest shown in
Figure 5, which was once difficult to define because of the
existence of sporadic trees in close proximity to the forest,
but is now quite obvious.
Overall, the proportion of the forest boundary that was not

buffered by natural vegetation significantly increased from

67% to 83% (Table I). Furthermore, the number of forests
with perimeters completely lacking any natural buffer dou-
bled, from 7 to 14 forests. Approximately, one third (35%)
of the church forests analyzed are completely surrounded
by agricultural landscapes today. Additionally, the percent-
age of the 500-m buffer area that was classified as natural
vegetation declined more than 75% during the course of
the study (Table I).
We performed a regression on both Buffer and Hard be-

cause they changed significantly between time periods
(Table II). Results suggest that a little more than a quarter
of the variation in Buffer and Hard can be attributed to cli-
mate, specifically total annual precipitation (Precip) and sea-
sonality of precipitation (Cf). None of the other explanatory
variables were included in either model following the back-
wards elimination routine. Increasing seasonality (Cf) was
associated with a decrease in Buffer and an increase in Hard
(negative and positively coefficients, respectively), whereas
increasing annual precipitation was associated with an in-
crease in Buffer and a decrease in Hard. Thus, wetter sites
with less seasonal precipitation experienced less LUC
change.

DISCUSSION

We find little evidence that church forests in the region
around Debra Tabor are declining in size. Rather, church
forests have proven to be remarkably resilient on the land-
scape despite decades of dramatic change to the world
around them. Our findings, therefore, highlight the effective-
ness of religious-based forest stewardship, a model of

Figure 2. Light green bars indicate church forest in the 1930s, while the dark green bars indicate the modern forests. The graph on the left shows changes in
forest area between time periods, while the graph on the right shows changes in forest edge variables. This figure is available in colour online at

wileyonlinelibrary.com/journal/ldr.

Table I. Differences of mean between time periods

1930s (1938–1940) Modern (2014–2016) t df Sig

Forest area (ha) 3.3 ± 0.5 3.2 ± 0.5 �0.52 36 –
Forest perimeter (m) 750 ± 62 769 ± 71 �1.02 36 –
Hard edge (Hard) 67.0 ± 4.7 83.0 ± 4.3 4.22 36 a

Buffer natural (Buffer) 19.6 ± 3.6 4.7 ± 2.3 �4.17 36 a

aSignificant at 0.001 level.
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conservation that is gaining global recognition as an impor-
tant form of biodiversity preservation (United Nationals
Educational, Cultural, and Social Organization, 2005;
Bhagwat & Rutte, 2006; Klepeis et al., in press). Regarding
narratives of church forest degradation, our results would
seem to contradict the general consensus that church forests
are in significant decline across the region (e.g., Lowman
2011, Cardelús et al., 2012; Reynolds et al., 2015), at least
to the extent that they are not decreasing in size. While
church forests comprise only a tiny fraction of the landscape
in the northern highlands, they are ecologically critical,
providing shelter to much of Ethiopia’s forest biodiversity;
thus, our results are encouraging from a conservation
perspective.
As for the broader debate about deforestation in the high-

lands, our results parallel the findings of McCann (1997)
that deforestation occurred earlier. While a systematic anal-
ysis of LUC changes across the entire portion of the
Ethiopian landscape photographed by the Italian Army was

beyond the scope of our investigation, it is clear from a rudi-
mentary visual perusal of a subset of the photos that nothing
like a vast church forest extended across the landscape in the
South Gondar region in the 1930’s. The pollen analysis of
Darbyshire et al. (2003) shows that the dominance of
Afromontane forests in northern Ethiopia peaked around
the beginning of 18th century, followed by three centuries
of deforestation. The era of Italian occupation photography
suggests that the majority of the deforestation of the afro-
montane forest occurred prior to the turn of the 20th century
in the area around Debra Tabor. Further investigation is
needed, however, to determine how the photos might pro-
vide even more clarity in regard to broader debates of
deforestation.
More specific to church forests, our findings are consis-

tent with the results of Meire et al. (2013), Daye & Healey
(2015), and Cardelús et al. (in revision), which is to say that
they have not decreased in size in the relatively recent past.
In contrast, for example, Meire et al. (2013) reported that a
single church forest photographed in Tigray increased in
size 16-fold between 1868 and 2008. Working with a sub-
stantially larger sample (n=1,022) in South Gondar,

Figure 3. A typical church forest in found to the north of Debra Tabor
(37.950°N, 12.204°E), South Gondar Zone, shown in 1938 (Italian occupa-
tion era photography) and 2015 (DigitalGlobe, by way of ESRI) at a scale of
1:10,000. The persistence of the core forest area, surrounding the circular
church towards the middle of the forest, can be readily observed. However,
declining woody biomass in the vicinity of the forest is also noteworthy.
The forest today is almost completely isolated on the landscape as a result
in declining bushlands. This figure is available in colour online at

wileyonlinelibrary.com/journal/ldr.

Figure 4. A second example of a church forest (38.028°N, 11.903°E),
South Gondar Zone, shown in 1938 and 2015 (DigitalGlobe, by way of
ESRI) at a scale of 1:10,000. Declining woody biomass is especially appar-
ent to the east of the forest. This figure is available in colour online at

wileyonlinelibrary.com/journal/ldr.
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Cardelús et al., (in revision) also reported a significant in-
crease in church forest size between 1960s and 2012. In both
cases, increases were attributed to the planting of Eucalyp-
tus, which can cause ecological harm (Fritzsche et al.,
2006). Cardelús et al. (in revision) also noted a decrease in
church forest canopy closure during the same time period
– thus, while forests may not be shrinking in size, they
may be facing other ecological threats.
Church forests are also threatened by local LUC changes.

For example, we found that the area proximate to church
forests has been increasingly transformed from bushland

into more intensive agricultural use (cultivation and
delimited pasture). Daye & Healey (2015) reported similar
findings in terms of both the resiliency of church forests
(few changes in size over time) and the marked changes that
are occurring peripheral to the actual forests. While not di-
rectly comparable, our forest edge results (an increase in
the proportion of the forest edge that is disturbed) are simi-
lar to the findings of Daye & Healey (2015), who reported
an increase in edge density (larger values were associated
with greater disturbance) for all six church forests they
analyzed.
One of the most pronounced changes to the landscape

around church forests between the era of Italian occupation
and the present is the degradation of bushlands. While many
church forests used to be buffered from intensive agricul-
tural activity (e.g., cultivation and pasture) today, they find
themselves significantly more isolated and vulnerable to
edge effects. Interestingly, these changes do not seem to be
associated with generic and easily measured proxies of hu-
man disturbance, such as distance to roads and settlements.
Further in-depth social science research is on-going to reveal
potential drivers of change.
Land use and cover change outside of church forests has

both direct and indirect effects on the ecological integrity
of the actual forests. Declining woody biomass outside for-
ests could result in increasing wood gathering within
church forests, which acts to directly degrade forests over
time. Klepeis et al. (in press) note that fuelwood collection
in church forests now occurs regularly despite being offi-
cially prohibited by church leaders. In particular, our re-
gression results suggest that sites with less overall
precipitation and more seasonal precipitation experienced
more of a decline in bushland around forests, perhaps be-
cause of greater vulnerability to grazing and fuel wood
gatherings.
Indirect effects relate to a hardening of the forest edge.

Recognizing the critical role scattered trees and
nondeveloped land can play around forest patches, our re-
sults suggest that, at the local scale, the following changes
have taken place: the loss of a distinctive microclimate, a de-
cline in soil nutrients, a decline in plant species richness, and
the loss of habitat for animals (Manning et al., 2006). Scal-
ing up, ecological changes at the landscape scale include a
decrease in connectivity for animals, a decrease in genetic
connectivity for tree populations, and a decrease in genetic
material and focal points for future ecosystem restoration
(Manning et al., 2006).

Figure 5. A third example of a church forest (37.963°N, 11.952°E), South
Gondar Zone, shown in 1940 and 2015 (DigitalGlobe, by way of ESRI) at a
scale of 1:8,000. A decline in riparian vegetation can be observed north of
the church forest. In addition, many areas once covered in natural vegetation
have been replaced by agriculture. This figure is available in colour online

at wileyonlinelibrary.com/journal/ldr.

Table II. Regression analysis results

Dependent variable Independent variables

Precip (mm) Cf (mm) Summary of fit
Coef. p Coef. p Constant R2 p N

Buffer (%) 0.002 0.004 �0.031 0.001 1.545 0.28 0.013 30
Hard (%) �0.003 0.005 0.043 0.007 �2.276 0.26 0.017 30

Precip means precipitation and is measured in millimeters, whereas Cf means seasonality.
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CONCLUSIONS

This study of changes to the church forest mosaic over a
~80-year time period using historical aerial photographs
shows that forests have not significantly decreased in size;
they have been remarkably resilient on the landscape. The
area surrounding church forests, however, has undergone
substantial change in LUC. Effectively, these changes have
increased the vulnerability of church forests, diminishing
their capacity to serve as an afro-montane forest ecosystem
refugia, from where restoration will emerge following a de-
cline in human modification.
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