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ABSTRACT

Birds and reptiles have been important models for studying the
energetics of embryonic development. Studies on these groups
reveal three metabolic patterns: an exponential increase in me-
tabolism with embryo age, a sigmoidal increase with age, or a
sigmoidal increase followed by a decrease before hatching.
Models developed to explain avian metabolic patterns and de-
velopmental costs partition total costs between growth and
maintenance. To test the generality of these models, we ex-
amined embryonic energetics of the oviparous white-spotted
bamboo shark Chiloscyllium plagiosum. Oviparous sharks must
actively ventilate during development, which could increase
their development costs relative to birds and reptiles. Our re-
sults demonstrated that bamboo shark embryos have a peaked
metabolic pattern and sigmoidal increase in body mass similar
to ratites, crocodilians, and some turtles. The total cost of de-
velopment was higher in bamboo sharks than in reptiles and
many birds. However, calculations reveal that the high cost of
bamboo shark development can be explained by the relatively
long incubation time rather than the additional cost of mus-
cular movement. Finally, an avian model can reasonably de-
scribe shark embryonic metabolism, suggesting that movement
costs do not significantly alter the metabolic pattern during
development.

Introduction

Embryonic development in vertebrates involves dramatic in-
creases in body size and physiological complexity. Birds and
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oviparous reptiles have been important model systems for stud-
ying the energetics associated with developmental changes.
These taxa are convenient for investigating embryonic ener-
getics because they develop within a protective eggshell and are
nourished by maternally supplied yolk, making it possible for
embryos to develop independently from their parents.

Birds and reptiles exhibit three basic metabolic patterns dur-
ing embryonic development. Altricial birds, snakes, and some
turtles show an exponential increase in oxygen consumption
during embryonic development (termed the “altricial pattern”;
reviewed in Vleck et al. 1979, 1980a; Vleck and Vleck 1987;
Vleck and Hoyt 1991). By contrast, most precocial birds and
some lizards show a sigmoidal increase in oxygen consumption
with age, where oxygen consumption reaches a plateau before
hatching (the “precocial pattern”; Vleck et al. 1979, 1980a;
Vleck and Vleck 1987; Thompson 1989; Vleck and Hoyt 1991;
Birchard et al. 1995; Thompson and Stewart 1997). Finally,
emus and other ratites, crocodilians, and some freshwater tur-
tles show a modified precocial pattern, where oxygen con-
sumption increases sigmoidally but then decreases before
hatching (the “peaked precocial pattern” or “peaked pattern”;
Vleck et al. 1980a, 1980b; Vleck and Vleck 1987; Thompson
1989; Whitehead and Seymour 1990; Vleck and Hoyt 1991;
Booth 1998).

Studies of avian and reptilian embryos reveal that develop-
mental changes in metabolism are generally correlated with
distinct growth patterns (Vleck et al. 1979, 1980a; Vleck and
Vleck 1987; Vleck and Hoyt 1991; but see Dietz et al. 1998).
For example, those species exhibiting an altricial pattern of
metabolism show an exponential increase in body mass. By
contrast, species that show a precocial pattern of metabolism
exhibit a sigmoidal increase in body mass because embryos
remain in the shell for some time after attaining maximal body
mass.

The observed parallel between changes in metabolism and
growth rate during embryonic development has led to the hy-
pothesis that the two variables are causally interrelated (Vleck
et al. 1979, 1980a; Hoyt 1987; Vleck and Vleck 1987). This
hypothesis has provided testable models designed to describe
the change in metabolic rate over the course of development.
A current model for avian embryonic metabolism partitions
development costs between the costs associated with building
new tissues (growth costs) and those associated with main-
taining existing tissues (maintenance costs; Hoyt 1987; Vleck
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and Vleck 1987). According to this model, maintenance costs
are proportional to body mass, whereas growth costs are pro-
portional to growth rate. This model provides an elegant ex-
planation for the observed link between growth rate and met-
abolic patterns (Hoyt 1987; Vleck and Vleck 1987). For
example, the exponential increase in body mass seen in altricial
birds should lead to an exponential increase in metabolism
because growth and maintenance costs continue to increase
during development. In the case of precocial birds, declining
growth rates towards the end of development should lead to a
decrease in growth costs, thereby causing total metabolic rate
to stabilize (the precocial pattern) or even decrease (the peaked
precocial pattern).

Not only does this model for avian embryonic energetics
explain the pattern of embryonic metabolism with age, but it
also generates predictions about the total cost of development.
For example, this model predicts that for a given egg mass and
incubation time, precocial birds should incur higher develop-
mental costs than altricial birds because precocial developers
must maintain a greater amount of tissue throughout devel-
opment. This model also predicts that longer incubation times
will increase developmental costs because an embryo must
maintain a given body mass for a longer period of time. Finally,
for a given developmental period, total developmental costs
should increase with hatchling size because both maintenance
and growth costs will increase. Empirical studies on various
birds support these predictions (Hoyt 1987; Vleck and Vleck
1987). Moreover, a recent study on two lizard species suggests
that the avian model may apply to oviparous amniotes in gen-
eral (Thompson and Stewart 1997). The applicability of the
model to nonamniote oviparous vertebrates, however, remains
untested.

In this study we further test the generality of this avian model
by measuring the oxygen consumption and body mass of de-
veloping oviparous shark embryos. Being nourished solely by
a maternally supplied yolk, oviparous sharks develop in a fash-
ion superficially similar to embryonic birds and reptiles. How-
ever, unlike birds and reptiles, which are amniotes and exchange
gases through vascularized extraembryonic membranes, sharks
are not amniotes and must, therefore, actively ventilate their
egg case at all but the earliest stages of development (Diez and
Davenport 1987; Ballard et al. 1993; Thomason et al. 1996b;
Tullis and Peterson 1998; Leonard et al. 1999), although ad-
ditional flow may be generated by external water currents
(Koob and Summers 1996). Recently, Leonard and coworkers
(1999) demonstrated that ventilatory movements increased the
standard metabolic rate of developing skates (Raja erinacea) by
approximately 20%. Thus, muscular activity associated with
ventilation could add to developmental costs of elasmobranchs,
resulting in higher than expected costs based on avian models.
Significant costs associated with embryonic movement could
also produce different metabolic patterns in developing ovip-
arous sharks, as compared to birds and reptiles. Data from

another elasmobranch, the lesser spotted dogfish (Scyliorhinus
canicula), show that oxygen consumption increases exponen-
tially with embryo age (Diez and Davenport 1987), as in altricial
birds and snakes. However, the paucity of data on metabolism
and growth of embryonic sharks makes it impossible to con-
clude if this pattern is common to all elasmobranchs. Addi-
tional information on the developmental energetics of elas-
mobranchs is important for uncovering general principles
governing the ontogeny of metabolism and cost of embryonic
development in oviparous vertebrates.

Among the 146 known species of oviparous sharks (Dulvy
and Reynolds 1997), we chose to study embryonic energetics
of the white-spotted bamboo shark, Chiloscyllium plagiosum,
for two reasons. First, bamboo sharks breed readily in captivity,
facilitating acquisition of study animals. Second, bamboo
sharks are tropical and normally live at approximately 257C,
which is 107–187C higher than the developmental temperature
of temperate species such as the lesser spotted dogfish and little
skate. The higher developmental temperature of bamboo sharks
will facilitate comparison with the developmental energetics of
reptiles and birds, which commonly develop at 307–377C. We
have two principle objectives in this study. First, we will describe
and quantify the metabolism and growth of developing em-
bryonic white-spotted bamboo sharks. Then, we will examine
the developmental energetics of bamboo sharks in the context
of the current avian model.

Material and Methods

Animals

Eggs of the white-spotted bamboo shark, Chiloscyllium pla-
giosum, were obtained from the Point Defiance Zoo and Aquar-
ium in Tacoma, Washington. Eggs were collected once or twice
per week and transported in seawater to the University of Puget
Sound, where they were placed in filtered and aerated marine
tanks. The developing eggs were maintained at their normal
habitat temperature of 247–267C, with salinity at 30–34 ppt.
Approximately 10% of the tank water was replaced every week
and water chemistry remained consistent with the conditions
at the Point Defiance Aquarium. Individual egg cases were
labeled with nonpiercing plastic tags bearing the collection date
and an identification number. We designated the collection date
as day 1 of embryo age. This convention ensured that the largest
error in estimating the date of lay was an underestimate of 5
d, equivalent to about 4% of the average developmental period.
Throughout this article, “embryo” refers to a shark before
hatching, and “hatchling” refers to a shark soon after eclosion.
Time from laying until eclosion is referred to as “incubation
period” or “developmental period.”
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Observations of Living Embryos

To observe morphological and ventilatory changes that occur
during development, we placed several developing embryos in
100-mL glass beakers. To remove embryos from their egg case,
an egg was placed in a large finger bowl containing seawater.
One end of the egg case was then cut open with scissors, and
the embryo and its yolk sac were then carefully decanted into
the beaker. Throughout the entire process, the embryo re-
mained submerged. After securing a permeable mesh covering
over the top of the beaker, the beaker was returned to its original
tank. Only embryos older than 20 d postlaying were removed
from their egg case. Before day 20, a gelatinous material sur-
rounds the embryos, preventing removal from the egg cases
without rupturing the yolk sac.

Observations of embryos during development focused on
morphological and behavioral aspects thought to be important
for gas exchange. Specifically, we monitored (1) presence or
absence of external gill filaments, (2) occurrence of buccal
pumping, and (3) duration and intensity of axial movement.
Respiration rate, in breaths per minute, was determined by
observation after embryos began buccal pumping. We collected
observational data at least two times per week for beaker-raised
embryos. In addition to documenting respiratory parameters,
we also recorded the time when the external yolk sac was no
longer visible and when animals hatched from their egg case
or beaker. Embryos hatched out of egg cases by creating an
opening at one end of the egg case and forcing their way
through the opening. In a similar fashion, beaker-reared sharks
“hatched” by pushing the mesh covering off of the beaker and
swimming out into the main tank. Hatching dates were deter-
mined unambiguously for six egg-reared embryos and four
beaker-reared embryos. Only these individuals were used in the
analysis of developmental time.

Oxygen Consumption

We used closed system respirometry to measure the rate of
oxygen consumption ( ) of 14 developing bamboo sharkV̇o2

embryos enclosed within their egg cases. The respirometer was
an airtight 0.59-L cylindrical Plexiglas chamber (7.5-cm di-
ameter; 13.5-cm height) equipped with a plastic-mesh partition
(mesh size 1 cm) that separated a small magnetic stir bar from
the egg case. To begin each trial, the respirometer was sub-
merged within the holding tank, allowing us to introduce the
egg case–enclosed embryo into the respirometer with minimal
stress. We then removed the respirometer from the tank, at-
tached the lid, and inserted an oxygen probe (Cameron In-
strument, E101 Oxygen Electrode, Port Aransas, Tex.). Inser-
tion of the oxygen probe created an airtight seal. The decline
in oxygen partial pressure within the chamber over time was
measured with an oxygen meter (Cameron Instrument, OM200
Oxygen Meter). Output from the oxygen meter was continu-

ously recorded with a MacLab/2e (ADInstruments, Mountain
View, Calif.) and displayed on a PowerMac 7100/80 computer
(Apple Computer, Cupertino, Calif.). Before each set of trials
for a given day, we calibrated the oxygen electrode using ni-
trogen-saturated and air-saturated water (0% O2 and 21% O2,
respectively).

Data were collected continuously throughout each experi-
mental trial, which lasted at least 30 min. We measured res-
pirometer water temperature immediately before and after each
trial; these measurements revealed that water temperature
within the respirometer remained at C. Because em-257 5 17

bryos within an egg case cannot effectively stir the water sur-
rounding the egg case, we used a magnetic stir bar to slowly
mix water outside of the egg case to prevent the formation of
oxygen-depleted areas. Following a 5 min adjustment period,
the rate of oxygen consumption remained relatively stable dur-
ing each trial 301 min, suggesting that the animals were neither
oxygen limited nor respiring intermittently. We conducted con-
trol trials that were identical to the experiments described above
but without an embryo or egg case (preliminary studies revealed
that controls with and without empty egg cases produced iden-
tical results). These controls determined average background
oxygen consumption. For the final analysis, we subtracted any
background consumption from animal oxygen consumption.

All embryos included in the analysis were tested at least four
times each during development, with the majority tested at
least nine times. Six out of the 14 animals were tested from 2
wk postlaying until hatching. Others were tested only during
a portion of their developmental period because of animal
availability or because an animal completed development at a
time when we were not sampling. Oxygen consumption of six
recent hatchlings was also measured.

Growth

To determine the growth rates of bamboo shark embryos, it
was necessary to know the mass of embryos without their at-
tached yolk sac. Because removing yolk sacs from embryos is
terminal, we could not weigh embryos used in the oxygen
consumption measurements described above. To generate a
curve relating age and body mass, we killed 51 additional em-
bryos at various stages of development. After removal from the
egg case, we cut through the vitelline duct to separate the em-
bryo from its yolk sac. We blotted and weighed each animal
and compiled these weights to determine the relationship be-
tween age and body mass. We also separately weighed the ex-
ternal yolk sac. Embryos used to determine the growth curve
came from the same captive population and were maintained
under identical conditions as those used in the respirometry
measurements.
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Figure 1. The change in the body mass (A) and external yolk mass
(B) of developing bamboo shark embryos. Body mass is wet mass
without external yolk. Body mass increased sigmoidally with embryo
age and was accompanied by a decrease in external yolk mass. Each
point on the graph represents one individual ( ). The line in An = 51
is a logistic curve fit to the data (see eq. [1] in text). The inset in A
is growth rate in grams per day calculated by dividing the difference
in mass by the difference in time for successive ages.

Data Analysis

Data were analyzed using Excel 5.0, where means are presented
as 5SD. We fit curves to our data using DeltaGraph 4.0. We
then calculated total metabolic costs by integrating areas under

versus age curves with Mathematica. SYSTAT 5.2.1 wasV̇o2

used to perform the multiple nonlinear regression analysis.

Results

Development Time and Observations of Embryos

Development time averaged d (range: 116–144 d;126 5 9.2
) for embryos that developed within their egg case. Inn = 6

comparison, the developmental time for beaker-reared embryos
averaged d (range: 110–126 d; ). Although em-118 5 7.9 n = 4
bryos raised in beakers tended to hatch sooner than individuals
within egg capsules, the incubation periods of these two groups
did not differ significantly (Student’s t-test, ).P = 0.15

Embryonic white-spotted bamboo sharks shifted from re-
spiring with external gills to internal gills. Fourteen-day-old
embryos had rudimentary filamentous external gills. These gill
filaments typically reached a maximum length at approximately
day 24 and then decreased in size until they were no longer
visible by about day 65 (i.e., halfway through embryonic de-
velopment). Embryos generally began buccal pumping by about
day 30 of development. Rates of buccal pumping increased
rapidly thereafter, reaching an average of 75 breaths per minute
at approximately day 65. Embryos continued to respire at this
rate until approximately 90 d, after which respiration rates
decreased until hatching. The respiration rate of newly hatched
sharks was approximately 35 breaths per minute.

Movement by bamboo shark embryos changed qualitatively
during development. Embryos younger than 40 d engaged in
rapid and sporadic lateral undulations that appeared to be
poorly coordinated. By contrast, embryos older than 50 d
moved in a more controlled fashion, making rhythmic lateral
undulations somewhat similar to the swimming motions of
hatchlings. In addition to changes in the form of movement
with increasing age, there was also a general decrease in the
time spent performing axial movements. Very young embryos
undulated frequently, whereas 95 d and older animals undu-
lated very rarely, their movements being limited primarily to
buccal pumping. Between these two extremes, the frequency
and duration of whole-body undulations declined gradually
with age.

Growth

Body mass of developing embryos increased sigmoidally with
age and could be adequately described using a logistic growth
function (Ackerman 1981a; Fig. 1A):

15
body mass = (1)

[20.12#(age280)]{1 1 e }

2(r = 0.95; n = 51).

Body mass of newly hatched animals averaged 14.3 5 1.24
g (range: 12.1–16.4 g; ). Growth rates, estimated by di-n = 8
viding the difference in mass by the difference in time for
successive ages, peaked on approximately day 80 at about 0.4
g d21 (inset in Fig. 1A).

The increase in body mass with age was accompanied by a
decrease in external yolk mass (Fig. 1B). At laying (day 0),
external yolk sacs weighed g ( ) and were no8.6 5 0.36 n = 5
longer visible around day 100.

Oxygen Consumption and Age

Oxygen consumption of developing bamboo sharks first in-
creased with age until approximately day 85 and then decreased
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Figure 2. Oxygen consumption of embryonic bamboo sharks during
development (filled circles; individuals). Oxygen consumptionn = 14
was measured at 257C using closed system respirometry. Embryonic
oxygen consumption increased exponentially with age until approxi-
mately day 85 and then decreased linearly until hatching. Values for
recent hatchlings are also shown for comparison (asterisks; in-n = 6
dividuals). The oxygen consumption of each animal was measured at
least four times and each point represents an individual measurement.
The lines represent the regression equations fit to the data (see eqq.
[2] and [3] in text).

Figure 3. Log-log plot of total oxygen consumed relative to body mass
for bamboo shark embryos. Body masses of animals used in the oxygen
consumption experiments were predicted from the equation for age
and body mass empirically derived in this study (Fig. 1A; eq. [1]).
Each point represents an individual measurement. The line represents
the regression equation fit to the data (see eq. [4] in text).

until hatching (Fig. 2). Because of the dynamic nature of the
change in with age, we chose to describe the relationshipV̇o2

with two different functions. During the first two-thirds of
development, oxygen consumption of bamboo shark embryos
could be described with an exponential function (Fig. 2):

0.05#ageV̇o = 0.85 # e (2)2

2 21˙(r = 0.60; Vo , mL O d ; age, days).2 2

After approximately 85 d, decreased linearly until hatch-V̇o2

ing, according to the equation (Fig. 2)

V̇o = 20.46 # (age) 1 90 (3)2

2 21˙(r = 0.66; Vo , mL O d ; age, days).2 2

Peak oxygen consumption of individuals averaged 42.0 5

mL O2 d21 (range: 34–55 mL O2 d21; ). By contrast,7.8 n = 9
oxygen consumption just before hatching averaged 30.4 5

mL O2 d21 (25.1–36.3 mL O2 d21). The of hatchlings˙3.9 Vo2

measured 5–10 d posthatching averaged mL O2 d2142.8 5 10.9
(27.6–57.9 mL O2 d21). Although posthatching valuesV̇o2

tended to be higher, pre- and posthatching measured inV̇o2

six different individuals were not significantly different (paired

t-test, ). Integrating the areas under the curves de-P = 0.08
scribed by equations (2) and (3) yielded a total oxygen con-
sumption of 3,018 mL O2 for a 127-d developmental period.

Oxygen Consumption and Body Mass

Oxygen consumption increased with body mass until embryos
weighed approximately 11 g. As embryo weight increased be-
yond 11 g, declined with body mass until hatching. How-V̇o2

ever, analyzing the log-transformed versus mass data re-V̇o2

vealed essentially one allometric relationship, such that oxygen
consumption increased with body mass according to the fol-
lowing equation (Fig. 3):

0.39V̇o = 1.14 # mass (4)2

2 21˙(r = 0.69; Vo , mL O d ; mass, g).2 2

Discussion

This study is the first to look at developmental energetics of a
tropical elasmobranch. Overall, bamboo shark embryonic de-
velopment was similar to that of other oviparous elasmobranchs
in terms of gross embryo characteristics and respiratory be-
haviors (Luer and Gilbert 1985; Diez and Davenport 1987;
Ballard et al. 1993). The major difference between development
of bamboo sharks and these other elasmobranchs is that bam-
boo sharks develop in less than half the time required for tem-
perate species (127 vs. 1300 d, respectively). This difference in
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developmental period is consistent with an approximately 107C
temperature difference between temperate and tropical waters.

Pattern of Oxygen Consumption during Development

The pattern of oxygen consumption in bamboo shark embryos
was clearly peaked (Fig. 2). In this respect, ontogeny of me-
tabolism in bamboo sharks is similar to that of ratites (emus,
rheas, and ostriches), crocodilians, and many turtles (Vleck et
al. 1980b; Cannon et al. 1986; Vleck and Vleck 1987; Thompson
1989; Whitehead and Seymour 1990; Leshem et al. 1991; Booth
1998). Embryonic bamboo shark peaked approximatelyV̇o2

70% of the way through the developmental period. This is
comparable to the timing of the peak of common rheaV̇o2

and emu embryos (Vleck et al. 1980b) but somewhat earlier
than the peak seen in Darwin’s rhea (Cannon et al. 1986) and
various turtle (Leshem et al. 1991; Booth 1998) and crocodilian
(Thompson 1989; Whitehead and Seymour 1990) embryos.
Comparing the metabolic pattern of developing sharks and
oviparous tetrapods with that of oviparous teleosts is difficult
because many teleosts still possess an external yolk sac on hatch-
ing. For example, although rainbow trout, Salmo gairdneri,
show a peaked metabolic pattern during embryonic develop-
ment (Rombough 1987), the peak occurs after hatchingV̇o2

when the embryo is free-living but still has an external yolk
sac.

In contrast to bamboo shark embryos, lesser spotted dogfish
embryos show an exponential increase in until hatchingV̇o2

(Diez and Davenport 1987) similar to that shown by altricial
birds and snakes (Clark 1953; Dmi’el 1970; Vleck et al. 1980a;
Vleck and Vleck 1987). This difference can be at least partially
explained by differences in growth dynamics. Body mass of
embryonic bamboo sharks increased sigmoidally, such that
maximal growth rate occurred at about 65% of the develop-
mental period (ca. day 80; Fig. 1A and inset), coinciding roughly
with the timing of peak . In the case of the lesser spottedV̇o2

dogfish, however, body mass and increase exponentiallyV̇o2

with age (Diez and Davenport 1987), following a pattern that
is similar to altricial birds and snakes. Parallel changes in me-
tabolism and growth during the embryonic development of
birds, reptiles, and elasmobranchs supports the hypothesis that
growth costs are a major determinant of the total cost of em-
bryonic development across diverse taxa (Vleck et al. 1980a;
Hoyt 1987; Vleck and Vleck 1987). In addition, studies on two
species of shark (Diez and Davenport 1987; this study) suggest
that oviparous elasmobranchs, like oviparous reptiles, exhibit
at least two metabolic patterns during embryonic development.
It is noteworthy that the different metabolic patterns seen in
developing reptiles and sharks are not correlated with altricial
or precocial development because all members of these two
orders are functionally precocial.

The peaked metabolic pattern of developing precocial birds,
crocodilians, and some turtles has been linked to synchronous

hatching of the young, with the plateau phase of oxygen con-
sumption representing a “waiting” stage (Vleck et al. 1980b;
Cannon et al. 1986; Whitehead and Seymour 1990). We did
not observe any alterations in developmental period that would
have produced synchronous hatching of bamboo sharks. No-
tably, however, synchronous hatching may occur in the lesser
spotted dogfish (Thomason et al. 1996a), a species that shows
an exponential increase in oxygen consumption during em-
bryonic development.

Although declining growth rate likely accounts for most of
the decrease in during the latter part of bamboo sharkV̇o2

development, additional factors could be involved. For ex-
ample, our observations on living embryos revealed that the
amount of axial movement decreased with embryo age. Thus,
the decline in during the latter stages of development mayV̇o2

have been partially caused by a decrease in energy expended
for movement. However, lesser spotted dogfish embryos exhibit
an exponential increase in oxygen consumption with age even
though movement declines as development proceeds (Diez and
Davenport 1987; Thomason et al. 1996b). Regardless of exactly
how movement contributes to total developmental costs, this
additional cost (Leonard et al. 1999) sets elasmobranchs apart
from birds and reptiles, which do not exhibit whole body ven-
tilatory movements during development. It is somewhat sur-
prising, therefore, that elasmobranch embryos exhibit the same
metabolic patterns shown by birds and reptiles despite the
added cost of muscular movement.

Oxygen Consumption and Total Cost of Embryonic
Development

Bamboo shark embryos consumed 30 mL O2 d21 (1.3 mL O2

h21) just before eclosion (Fig. 2). This value is almost five times
greater than the oxygen consumption of lesser spotted dogfish
(Scyliorhinus canicula) at the same point in development (Diez
and Davenport 1987). However, bamboo shark hatchlings are
over four times larger than lesser spotted dogfish hatchlings
(approximately 14 g vs. 3.3 g, respectively) and develop at tem-
peratures 107C warmer (157C for the dogfish and 257C for the
bamboo shark). When expressed on a mass-specific basis and
adjusted for temperature, the metabolic rate of bamboo shark
embryos is about half that of lesser spotted dogfish (1.4 vs. 3.0
mL O2 g21 min21, respectively; ; Butler and TaylorQ = 2.110

1975). This difference is consistent with data showing that met-
abolic rate scales with body mass to the 0.6–0.9 power (Withers
1992).

The of embryonic bamboo sharks just before eclosionV̇o2

is similar to that of comparably sized reptiles (11–16 g) at the
same developmental stage. When adjusted for temperature, rep-
tiles consume between 1 and 2 mL O2 h21 just before hatching
compared to 1.3 mL O2 h21 consumed by the bamboo sharks
(snapping turtle, Birchard and Reiber 1995; soft-shelled turtle,
Leshem et al. 1991; snakes, Vipera and Spalerosophis, Dmi’el
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1970). Measured values (summarized in Bushnell et al. 1989)
and those calculated from allometric equations (Bennett 1982)
indicate that similarly sized adult sharks and reptiles also have
comparable metabolic rates.

We calculated the total cost of bamboo shark development
by integrating oxygen consumption as a function of age from
laying to hatching (eqq. [2] and [3]). These calculations yielded
a total cost of 3,018 mL O2, equivalent to approximately 59.3
kJ (using a conversion factor of 19.64 kJ L O2

21; Hoyt 1987;
Schmidt-Nielsen 1990), which is within the values reported for
reptiles and birds (Table 1). Dividing the total cost of devel-
opment by hatchling mass yielded a mass-specific develop-
mental cost of 4.23 kJ g21 wet mass for bamboo shark embryos.
This value is much higher than mass-specific costs estimated
for most reptiles and for many birds (Table 1). It is also higher
than the values reported for lesser spotted dogfish and two
teleosts (Table 1).

Avian models of embryonic energetics predict that long in-
cubation times will increase the overall cost of development by
increasing maintenance costs (Vleck et al. 1980a; Hoyt 1987;
Vleck and Vleck 1987). This prediction is supported by studies
on both birds and reptiles (Ackerman et al. 1980; Vleck and
Kenagy 1980; Vleck et al. 1984; Birchard et al. 1995; Thompson
and Stewart 1997). Our results on bamboo sharks, which take
substantially longer to develop than do reptiles and birds (Table
1), further support this prediction. Dividing total develop-
mental costs (kJ g hatchling21) shown in Table 1 by the cor-
responding incubation period (days) indicates that the daily
cost of development (kJ g hatchling21 d21) for bamboo sharks
is about the same as many reptiles and substantially lower than
that of all birds examined (Table 1). This comparison reveals
two important points related to the developmental energetics
of sharks. First, movement costs do not contribute to devel-
opmental costs so as to increase the daily cost of development
of bamboo sharks relative to birds and reptiles. Second, our
results are consistent with observations that long incubation
times will lead to higher total costs of development.

Comparisons with the lesser spotted dogfish indicate that
the high total developmental cost seen in bamboo shark em-
bryos is not the rule for elasmobranchs. The total cost of de-
velopment of bamboo sharks was nearly six times higher than
the 10 kJ used by the lesser spotted dogfish during embryonic
development (Diez and Davenport 1987; Table 1). Dividing
total costs by hatchling body masses shows that it costs almost
1.5 times as much to build each gram of bamboo shark hatchl-
ing relative to each gram of dogfish hatchling (4.2 vs. 3.0 kJ g
hatchling21, respectively). Lesser spotted dogfish take over twice
as long to develop as do bamboo sharks. However, the much
larger size and higher incubation temperature of the bamboo
shark embryos are likely to overwhelm any contribution from
increased incubation time and lead to higher overall devel-
opmental costs in bamboo sharks relative to lesser spotted dog-
fish. Differences in the hatchling size, and therefore cost, be-

tween bamboo sharks and lesser spotted dogfish suggest that
these two shark species may have distinct reproductive strat-
egies. Additional information on adult female size and laying
schedule is needed to evaluate this idea.

Partitioning the Total Cost of Shark Development according to
an Avian Model

The current model for avian embryonic energetics partitions
developmental costs into growth costs and maintenance costs
according to the following equation (Hoyt 1987; Vleck and
Vleck 1987):

BV̇o = A # mass 1 C # growth rate, (5)2

where parameter A represents metabolic intensity (mL O2 g21

d21), B is the scaling of maintenance costs with body mass, and
C is the metabolic cost of growth (mL O2 g21). The units of
the remaining terms are as follows: (mL O2 d21); bodyV̇o2

mass (g); growth rate (g d21). To determine if this model can
be applied to an anamniote, and to gain insight into how growth
and maintenance costs are partitioned in developing sharks, we
fit our data to this model with multiple nonlinear regression
and our empirically determined relationships. Briefly, we first
calculated input values for body mass and using equationsV̇o2

(1), (2), and (3). We then used equation (1) to calculate growth
rate as a change in mass per unit time for each successive age.
Multiple nonlinear regression analysis was then used to fit our
values for , body mass, and growth rate to the above equa-V̇o2

tion. Results of this analysis yielded the following parameter
values: mL O2 g21 d21, , and mL O2A = 10 B = 0.48 C = 45.5
g21. To compare parameter A to values found for birds and
reptiles, we repeated the analysis using embryonic dry mass
(Hoyt 1987; Thompson and Stewart 1997) estimated at 27%
of wet mass (Diez and Davenport 1987). This manipulation
increased parameter A to 18.6 mL O2 g21 d21 but did not change
parameters B or C.

Our results indicate that embryonic sharks have a lower met-
abolic intensity (parameter A) than do developing birds and
reptiles. Parameter A was lower in bamboo sharks (18.6 mL
O2 g21 d21) than in birds (150–217 mL O2 g21 d21) and reptiles
(28.91 mL O2 g21 d21) subjected to the same analysis (Hoyt
1987; Thompson and Stewart 1997). Even if our calculated
metabolic intensity for sharks is corrected for developmental
temperature, it is still only 25% of the lowest bird value and
74% of the reptile value. Data on five species of birds indicate
that metabolic intensity increases with body mass (Hoyt 1987).
Mass-dependence of metabolic intensity would complicate
comparison between results because the mass of bamboo shark
hatchlings exceeded that of the birds and reptiles for which
these data are available. However, the same multiple regression
analysis on published data from the lesser spotted dogfish (Diez
and Davenport 1987) yielded an even lower value for metabolic



278

Table 1: Comparison of the embryonic developmental costs of oviparous reptiles, birds, and oviparous sharks

Species

Study
Temp.
(7C)

Hatchling
Mass
(g ww)

Incubation
Period
(d)

Total
Oxygen
Consumed
(mL O2)

Total
Energy
Used
(kJ)

Mass-Specific
Development
Costs
(kJ g Hatchling21)

Daily
Development
Costs
(kJ g Hatchling21

d21) Source

Echis colorata . . . . . . . . . . . . . . . . . . . 30 6.2 43 445.20 8.74 1.41 .033 Dmi’el 1970
Cerastes cerastes . . . . . . . . . . . . . . . . 30 6.5 62 864.50 17.0 2.61 .042 Dmi’el 1970
Vipera xanthina . . . . . . . . . . . . . . . . 30 10.7 41 588.80 11.6 1.08 .026 Dmi’el 1970
Spalerosophis cliffordi . . . . . . . . . 30 16.3 60 1,328.50 26.2 1.60 .027 Dmi’el 1970
Natrix tessellata . . . . . . . . . . . . . . . . 30 5.1 37 529.90 10.4 2.04 .055 Dmi’el 1970
Python molurus . . . . . . . . . . . . . . . . 30 116 68 4,969.4 97.6 .84 .012 Black et al. 1984
Sceloporus virgatus . . . . . . . . . . . . 30 .38 35.7 82.0 1.61 4.24 .119 Vleck and Hoyt 1991
Varanus komodoensis . . . . . . . . . 29 98 235 16,772 329.4 3.36 .014 Birchard et al. 1995
Eumeces anthacinus . . . . . . . . . . . 27 .24 27 42.8 .8 3.50 .130 Thompson and Stewart 1997
Eumeces fasciatus . . . . . . . . . . . . . . 27 .285 24.8 46.6 .9 3.21 .130 Thompson and Stewart 1997
Trionyx triunguis . . . . . . . . . . . . . . 27 11.83 81.8 1,283.00 108.4 2.13 .026 Leshem et al. 1991
Chelydra serpentina . . . . . . . . . . . 24 7.5 70.4 764.00 15.0 2.00 .028 Birchard and Reiber 1995
Emydura signata . . . . . . . . . . . . . . . 24 5 78 464.00 9.1 1.82 .023 Booth 1998
Caretta caretta . . . . . . . . . . . . . . . . . 30 18.1 50 1,939.00 107.1 2.10 .042 Ackerman 1981b
Chelonia mydas . . . . . . . . . . . . . . . . 30 30.8 63 2,739.00 88.9 1.75 .028 Ackerman 1981b
Chelonia mydas . . . . . . . . . . . . . . . . 30 19.9 65 3,142.00 157.9 3.10 .048 Ackerman 1981b
Alligator mississippiensis . . . . . . 30 44 68 5,295.32 59.3 2.99 .012 Thompson 1989; Vleck and

Hoyt 1991
Crocodylus johnstoni . . . . . . . . . . 30 47.2 91 6,206.80 121.9 2.58 .028 Whitehead and Seymour

1990
Crocodylus porosus . . . . . . . . . . . . 30 74.2 91 9,267.60 182.0 2.45 .027 Whitehead and Seymour

1990
Anser anser . . . . . . . . . . . . . . . . . . . . . 37 88.5 28 12,046.91 236.6 2.67 .095 Romanoff 1967; Vleck et al.

1980a
Gallus gallus . . . . . . . . . . . . . . . . . . . . 37 32 21 4,861.41 95.5 2.98 .142 Romanoff 1967
Sterna maxima . . . . . . . . . . . . . . . . . 37 42 28 5,351.81 105.1 2.50 .089 Vleck et al. 1980a
Casmeridius albus . . . . . . . . . . . . . 37 28.4 27 2,750.53 54.0 1.90 .070 Vleck et al. 1980a
Bulbulcus ibis . . . . . . . . . . . . . . . . . . . 37 14.7 23 1,641.79 32.2 2.19 .095 Vleck et al. 1980a
Eudocimus albus . . . . . . . . . . . . . . . 37 27.6 22 2,324.09 45.6 1.65 .075 Vleck et al. 1980a
Columbia livia . . . . . . . . . . . . . . . . . 37 9.7 17 1,364.61 26.8 2.76 .162 Romanoff 1967; Vleck et al.

1980a
Melopsittacus undulatus . . . . . . 37 1.44 18 255.86 5.0 3.49 .194 Bucher as in Vleck et al.

1980a
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Table 1 (Continued)

Species

Study
Temp
(7C)

Hatchling
Mass
(g ww)

Incubation
Period
(d)

Total
Oxygen
Consumed
(mL O2)

Total
Energy
Used
(kJ)

Mass-Specific
Development
Costs
(kJ g Hatchling21)

Daily
Development
Costs
(kJ g Hatchling21

d21) Source

Parus major . . . . . . . . . . . . . . . . . . . . . 37 1.2 13 213.22 4.2 3.49 .268 Mertens as in Vleck et al.
1980a

Troglodytes aedon . . . . . . . . . . . . . . 37 .83 12 191.90 3.8 4.54 .378 Kendeigh 1940
Paephila guttata . . . . . . . . . . . . . . . . 37 .58 14 100.21 2.0 3.39 .242 Vleck et al. 1979
Puffinus pacificus . . . . . . . . . . . . . . . 37 32 52 7,950.00 156.1 4.88 .094 Ackerman et al. 1980
Leipoa ocellata . . . . . . . . . . . . . . . . . . 34 98 62 31,211.81 613 6.26 .101 Vleck et al. 1984
Alectura lathami . . . . . . . . . . . . . . . 34 98 49 24,134.42 474 4.84 .099 Vleck et al. 1984
Gadus morhua . . . . . . . . . . . . . . . . . . 5 .00030 36 .020 .00048 1.65 .046 Davenport and Lonning

1980
Salmo gairdneri . . . . . . . . . . . . . . . . 6 .028 107 20.50 .403 1.97 .018 Rombough 1987
Scyliorhinus canicula . . . . . . . . . . 15 3.3 300 502.00 10.0 2.99 .010 Diez and Davenport 1987
Chyloscyllium plagiosum . . . . . . 25 14 127 3,018.00 59.3 4.23 .033 This study

Note. Hatchling masses for birds and most reptiles represent yolk-free hatchlings as reported in the literature. The masses given for shark, teleost, C. johnstoni, C. porosus, T. triunguis, and

E. signata hatchlings include any residual yolk. To express energy use in common units, the following conversion factors were sometimes employed: 1J = 0.239 kcal (Randall et al. 1997) and

1 L kJ (Hoyt 1987). If only dry mass for reptiles or birds was provided in the original article, wet mass was calculated as mass and mass, respectively. TemperatureO = 19.64 4 # dry 5 # dry2

for bird development averaged from data compiled in Zonneveld and Kooijman (1993). ww = wet weight.
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Figure 4. The cost of embryonic development in bamboo sharks. The
solid line represents the cost predicted from empirical equations in
the present study (eqq. [2] and [3]). The remaining three curves are
costs predicted using an avian model of embryonic energetics (Hoyt
1987). The dotted-dashed line shows the total cost predicted from the
avian model, the dashed line represents predicted maintenance costs,
and the dotted line represents predicted growth costs. We obtained
these three later curves by using multiple nonlinear regression to fit
our data to the avian model.

intensity than that obtained for the bamboo shark (analysis not
shown), suggesting that developing sharks do have a lower
metabolic intensity than reptiles and birds. The greater meta-
bolic intensity of amniotes may result from additional energy
spent on maintenance of extraembryonic membranes. The
much higher metabolic intensity of avian embryos relative to
shark and reptile embryos may be due to the suite of developing
physiological features that distinguish endotherms from ecto-
therms. Determining the physiological basis for the differences
in metabolic intensity requires additional cellular and bio-
chemical studies on developing sharks, reptiles, and birds.

Maintenance metabolism of embryonic bamboo sharks
scaled with body mass to the 0.48 power (parameter B in eq.
[5]), a value which falls within the range reported for devel-
oping birds (0.45–0.55; Hoyt 1987) but is lower than that re-
ported for a developing reptile (0.77; Thompson and Stewart
1997). The value of 0.48 is larger than the factor of 0.39 found
for the scaling of total metabolic rate with body mass (eq. [4]).
If the scaling relationship is determined for bamboo shark em-
bryos weighing ≤11 g (i.e., while is still increasing withV̇o2

body mass; see “Results”), the exponent increases to 0.45. It
has been argued that maintenance costs of embryos should
scale isometrically with body mass (scaling factor of 1), even
though the resting metabolic rate of adult animals scales, on
average, with the 0.7 power of body mass (Brody 1945 in Vleck
et al. 1980a). This argument is based on observations that
percent body water decreases and muscular movement in-
creases during development (Vleck et al. 1980a), factors which
would tend to increase the 0.7 scaling exponent of adult main-
tenance costs. However, data on various birds, reptiles, and
now bamboo sharks do not support the hypothesis that em-
bryonic maintenance costs are directly proportional to body
mass.

According to our analysis, the cost of growth in bamboo
shark embryos (parameter C) was 45.5 mL O2 g21, which is
lower than values found for a reptile (68 mL O2 g21; Thompson
and Stewart 1997) and for various birds (ranging from 89 to
284 mL O2 g21; Hoyt 1987), suggesting that the cost of growth
may be lower in elasmobranchs than in oviparous amniotes.
The higher growth costs in birds and reptiles may be partly
due to the synthesis of extraembryonic membranes (Ar et al.
1987; Dietz et al. 1998).

Using our values for parameters A, B, and C and equation
(5), we determined total developmental costs and the total
amount of energy devoted to growth and maintenance during
bamboo shark development (Fig. 4). Integrating under the
growth and maintenance curves revealed that bamboo shark
embryos used about 2,157 mL O2 for maintenance and 679 mL
O2 for growth, yielding a total cost of development of 2,836
mL O2. This value is only 6% lower than the 3,018 mL O2

calculated from our empirically derived oxygen consumption
versus age equations. Dividing the individual costs by the total
cost indicates that developing bamboo sharks use 76% of total

energy for maintenance and 24% for growth. These percentages
are within the ranges for avian embryos (70%–80% of total
costs on maintenance and the remainder on growth; Hoyt 1987)
but differs from that of a small lizard (90% for maintenance
and 10% for growth; Thompson and Stewart 1997). Data from
three physiologically different vertebrates classes, an anamniote,
an ectothermic amniote, and an endothermic amniote, suggest
that maintenance costs greatly exceed growth costs during em-
bryonic development.

In summary, tropical white-spotted bamboo sharks showed
a peaked precocial pattern of oxygen consumption during em-
bryonic development much like that exhibited by some pre-
cocial birds, crocodilians, and some turtles. The total cost of
development was high in bamboo sharks as compared to rep-
tiles and many birds. However, the relatively long incubation
times of the sharks adequately explain the high developmental
cost. We have also demonstrated that the ontogeny of metab-
olism in bamboo sharks can be adequately described by an
avian model of developmental energetics, despite the additional
cost associated with ventilatory movements.

Acknowledgments

We are indebted to J. Rupp and the staff at the Point Defiance
Zoo and Aquarium for providing the shark eggs and instructing
us on animal care and maintenance. Additional thanks to T.
Daniel, C. Hull, B. Kirkpatrick, and M. Tu for their contri-
butions to this manuscript. We are also grateful to B. Moon,



Growth and Metabolism in Embryonic White-Spotted Bamboo Sharks 281

P. Wimberger, two anonymous reviewers, and especially M. Tu
for helpful comments that improved the manuscript. The Mur-
dock Charitable Trust and the University of Puget Sound pro-
vided funding for this study.

Literature Cited

Ackerman R.A. 1981a. Growth and gas exchange of embryonic
sea turtles (Chelonia, Caretta). Copeia 1981:757–765.

———. 1981b. Oxygen consumption by sea turtle (Chelonia,
Caretta) eggs during development. Physiol Zool 54:316–324.

Ackerman R.A., G.C. Whittow, C.V. Paganelli, and T.N. Pettit.
1980. Oxygen consumption, gas exchange, and growth of
embryonic wedge-tailed shearwaters (Puffinus pacificus chlo-
rorhynchus). Physiol Zool 53:210–221.

Ar A., H. Girard, and P. Dejours. 1987. Oxygen consumption
of the chick embryo’s respiratory organ, the chorioallantoic
membrane. Respir Physiol 68:377–388.

Ballard W.W., J. Mellinger, and H. Lechenault. 1993. A series
of normal stages for development of Scyliorhinus canicula,
the lesser spotted dogfish (Chondrichthyes: Scyliorhinidae).
J Exp Zool 267:318–336.

Bennett A.F. 1982. The energetics of reptilian activity. Pp.
155–199 in C. Gans and F.H. Pough, eds. Biology of the
Reptilia. Vol. 13. Academic Press, New York.

Birchard G.F. and C.L. Reiber. 1995. Growth, metabolism, and
chorioallantoic vascular density of developing snapping tur-
tles (Chelydra serpentina): influence of temperature. Physiol
Zool 68:799–811.

Birchard G.F., T. Walsh, R. Rosscoe, and C.L. Reiber. 1995.
Oxygen uptake by Komodo dragon (Varanus komodoensis)
eggs: the energetics of prolonged development in a reptile.
Physiol Zool 68:622–633.

Black C.B., G.F. Birchard, G.W. Schuett, and V.D. Black. 1984.
Influence of incubation water content on oxygen uptake in
embryos of the Burmese python (Python molurus biovittatus).
Pp. 137–145 in R.S. Seymour, ed. Respiration and Metab-
olism of Embryonic Vertebrates. Junk, Dordrecht.

Booth D.T. 1998. Incubation of turtle eggs at different tem-
peratures: do embryos compensate for temperature during
development? Physiol Zool 71:23–26.

Bushnell P.G., P.L. Lutz, and S.H. Gruber. 1989. The metabolic
rate of an active, tropical elasmobranch, the lemon shark
(Negaprion brevirostris). Exp Biol 48:279–283.

Butler P.J. and E.W. Taylor. 1975. The effect of progressive
hypoxia on respiration in the dogfish (Scyliorhinus canicula)
at different seasonal temperatures. J Exp Biol 63:117–130.

Cannon M.E., R.E. Carpenter, and R.A. Ackerman. 1986. Syn-
chronous hatching and oxygen consumption of Darwin’s
rhea eggs (Pterocnemia pennata). Physiol Zool 59:95–108.

Clark H. 1953. Metabolism of the black snake embryo. II. Res-
piratory exchange. J Exp Biol 30:502–505.

Davenport J. and S. Lonning. 1980. Oxygen consumption in

developing eggs and larvae of the cod, Gadus morhua L. J
Fish Biol 16:249–256.

Dietz M.W., M. van Kampen, M.J.M. van Griensven, and S.
van Mourik. 1998. Daily energy budgets of avian embryos:
the paradox of the plateau phase in egg metabolic rate. Phys-
iol Zool 71:147–156.

Diez J.M. and J. Davenport. 1987. Embryonic respiration in
the dogfish (Scyliorhinus canicula L.). J Mar Biol Assoc UK
67:249–261.

Dmi’el R. 1970. Growth and metabolism in snake embryos. J
Embryol Exp Morphol 23:761–772.

Dulvy N.K. and J.D. Reynolds. 1997. Evolutionary transitions
among egg-laying, live-bearing and maternal inputs in sharks
and rays. Proc R Soc Lond Ser B Biol Sci 264:1309–1315.

Hoyt D.F. 1987. A new model for avian embryonic energetics.
J Exp Zool 1(suppl.):127–138.

Kendeigh S.C. 1940. Factors affecting length of incubation. Auk
57:499–513.

Koob T.J. and A. Summers. 1996. On the hydrodynamic shape
of little skate (Raja erinacea) egg capsules. Bull Mt Desert
Isl Biol Lab 35:108–111.

Leonard J.B.K., A.P. Summers, and T.J. Koob. 1999. Metabolic
rate of embryonic little skate, Raja erinacea (Chondrichthyes:
Batoidea): the cost of active pumping. J Exp Zool 283:13–18.

Leshem A., A. Ar, and R.A. Ackerman. 1991. Growth, water,
and energy metabolism of the soft-shelled turtle (Trionyx
triunguis) embryo: effects of temperature. Physiol Zool 64:
568–594.

Luer C.A. and P.W. Gilbert. 1985. Mating behavior, egg dep-
osition, incubation period, and hatching in the clearnose
skate, Raja eglanteria. Environ Biol Fishes 13:161–171.

Randall D., W. Burggren, and K. French. 1997. Eckert Animal
Physiology: Mechanisms and Adaptations. W. H. Freeman,
New York.

Romanoff A.L. 1967. Biochemistry of the avian embryo. Wiley,
New York.

Rombough P.J. 1987. Growth, aerobic metabolism, and dis-
solved oxygen requirements of embryos and alevins of steel-
head, Salmo gairdneri. Can J Zool 66:651–660.

Schmidt-Nielsen K. 1990. Animal Physiology: Adaptations and
Environment. Cambridge University Press, Cambridge.

Thomason J.C., W. Conn, E. Le Comte, and J. Davenport.
1996a. Effect of temperature and photoperiod on the growth
of the embryonic dogfish, Scyliorhinus canicula. J Fish Biol
49:739–742.

Thomason J.C., J. Davenport, and E. Le Comte. 1996b. Ven-
tilatory mechanisms and the effect of hypoxia and temper-
ature on the embryonic lesser spotted dogfish. J Fish Biol
49:965–972.

Thompson M.B. 1989. Patterns of metabolism in embryonic
reptiles. Respir Physiol 76:243–256.

Thompson M.B. and J.R. Stewart. 1997. Embryonic metabolism



282 A. Tullis and G. Peterson

and growth in lizards of the genus Eumeces. Comp Biochem
Physiol A 118:647–654.

Tullis A. and G.M. Peterson. 1998. Developmental changes in
the metabolism of embryonic bamboo sharks, Chiloscyllium
plagiosum. Am Zool 37:121. (Abstr.)

Vleck C.M. and D.F. Hoyt. 1991. Metabolism and energetics
of reptilian and avian embryos. Pp. 285–306 in D.C. Dem-
ming and M.W. Ferguson, eds. Egg Incubation: Its Effects
on Embryonic Development in Birds and Reptiles. Cam-
bridge University Press, Cambridge.

Vleck C.M., D.F. Hoyt, and D. Vleck. 1979. Metabolism of avian
embryos: patterns in altricial and precocial birds. Physiol
Zool 52:363–377.

Vleck C.M. and G.J. Kenagy. 1980. Embryonic metabolism of
the fork-tailed storm-petrel: physiological patterns during
prolonged and interrupted incubation. Physiol Zool 53:
32–42.

Vleck C.M. and D. Vleck. 1987. Metabolism and energetics of
avian embryos. J Exp Zool 1(suppl.):111–125.

Vleck C.M., D. Vleck, and D.F. Hoyt. 1980a. Patterns of me-
tabolism and growth in avian embryos. Am Zool 20:405–416.

Vleck D., C.M. Vleck, and D.F. Hoyt. 1980b. Metabolism of
avian embryos: ontogeny of oxygen consumption in the rhea
and emu. Physiol Zool 53:125–135.

Vleck D., C.M. Vleck, and R.S. Seymour. 1984. Energetics of
embryonic development in the megapode birds, mallee fowl
Leipoa ocellata and brush turkey Alectura lathami. Physiol
Zool 57:444–456.

Whitehead P.J. and R.S. Seymour. 1990. Patterns of metabolic
rate in embryonic crocodilians Crocodylus johnstoni and
Crocodylus porosus. Physiol Zool 63:334–352.

Withers P.C. 1992. Comparative Animal Physiology. Saunders,
Fort Worth, Tex.

Zonneveld C. and S.A.L.M. Kooijman. 1993. Comparative ki-
netics of embryo development. Bull Math Biol 55:609–635.



Copyright of Physiological & Biochemical Zoology is the property of University of Chicago Press and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.


